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Abstract 

A closed form expression for the waiting time distribution under FCFS is derived for the 
queueing system MGE k / M G E  m/s ,  where MGE n is the class of mixed generalized Erlang 
probability density functions (pdfs) of order n, which is a subset of the Coxian pdfs that have 
rational Laplace transform. Using the calculus of difference equations and based on previous 
results of the author, it is proved that the waiting time distribution is of the form 1 -  
)~(s+m-1) t ~ u t )~a ~y~ ~, under the assumption that the roots uy are distinct, i.e. belongs to the Coxian 
class of distributions of order (~+m-1). The present approach offers qualitative insight by 
providing exact and asymptotic expressions, generalizes and unifies the well known theories 
developed for the G / G / l ,  G / M / s  systems and leads to an O(k3(~+m-1) 3) algorithm, 
which is polynomial if only one of the parameters s or m varies, and is exponential if both 
parameters vary. As an example, numerical results for the waiting time distribution of the 
M G E 2 / M G E 2 / s  queueing system are presented. 

Keywords: Multichannel queues, mixed generalized Erlang pdf, waiting time distribution 

1. Introduction 

The explicit evaluation, either by analytic or by numerical means, of the 
waiting time distribution in a general multi-server queueing system is known to 
present substantial difficulties. In this paper based on previous results of the 
author (Bertsimas [2]), which are summarized in the end of this section, we derive 
closed form expressions for the waiting time distribution under FCFS for the 
MGEJMGEm/s system, where M G E ,  is the class of mixed generalized Erlang 
probability density functions (pdfs) of order n, which is a subset of the pdfs that 
have rational Laplace transform (R,) .  It should be noted, however, that Schass- 
berger [7] showed that a sequence of mixed Erlang distributions can be found 
which will converge weakly to any arbitrary distribution function. In the sense of 
pointwise convergence at points of continuity, we can then say that the class of 
mixed generalized Erlangs, which certainly includes the class of mixed Erlang 
distributions, is dense in the class of all distribution functions. The denseness of 
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this family gives an indication of the theoretical comprehensiveness of the mixed 
generalized Erlang as a practical modeling tool. 

Concerning exact calculations for the waiting time distribution of multiserver 
queueing systems, when we go beyond the exponentially assumption for the 
service time pdf, which seldom holds in practice, the relevant analytic and 
computational problems become really challenging, especially if this also happens 
for the interarrival time pdf. Notable among recent works concerning the deriva- 
tion of the waiting time distribution are those of Pollaczek [5], for the G / R m / s  , 
Avis [11 for the M / E 2 / 2  , E k / E 2 / 2  and D / E 2 / 2  , de Smit [8] for the G / H m / s  , 
Ishikawa [4] for the G / E m / s  and Ramaswami and Lucantoni [6] for the G / P H / s .  
For a thorough account of approximations, purely numerical methods and 
asymptotic results corresponding to the waiting time distribution of multi-server 
queues with non-exponential service times, see Tijms [10]. 

We close this section with a description of the system, an explanation of its 
structure, the notation used and review of the results for the steady-state 
probability distribution for the number of customers in the system from [2] that 
we will use for the derivation of the waiting time distribution. In section 2, we 
write down the equations that describe the system and then use the calculus of 
difference equations to derive a closed form expression for the waiting time 
distribution. Furthermore, we show that the results for two seemingly very 
different systems G / G / 1  and G / M / s ,  which are traditionally analysed with 
very different methods (Wiener-Hopf decomposition and imbedded Markov 
chain respectively) are unified using the results of the present paper in the case of 
mixed generalized Erlang distributions. In section 3, we examine the asymptotic 
behavior of the waiting time distribution and in the final section 4, the estab- 
lished theoretical results, are used to write a computationally efficient algorithm 
in order to extract numerical results. As an example, the algorithm is applied to 
the general class of MGE 2 distributions, i.e. for the M G E 2 / M G E 2 / s  system, for 
which numerical results are reported. 

We shall examine, henceforth, an s identical server single waiting line queueing 
system with interarrival and service time distributions of mixed generalized 
Erlang type of order k and m respectively, which is a proper subset of the Coxian 
distributions that have rational Laplace transform. The queue discipline is 
first-come-first-served (FCFS). 

The general Coxian class C n was introduced in Cox's [3] pioneering paper. The 
stage representation of the Coxian distribution is presented in fig. 1. It should be 
noted that this stage representation of the Coxian distribution is purely formal in 
the sense that the branching probabilities qi can be negative and the rates/~i can 
be complex numbers. The mixed generalized Erlang distribution is a Coxian 
distribution, where we assume that the probabilities qi are non-negative and the 
rates /~ are reals. As a result, the mixed generalized Erlang distribution has a 
valid probabilistic interpretation, which is further exploited in this paper. 

To analyse the model we conceive of the arrival process as an arrival timing 



D. Bertsimas / An exact FCFS waiting time analysis 307 

~ 

la I o e l  

Fig. 1. The C,, class of distributions. 

channel (ATC) consisting of k consecutive stages with rates k 1, •2,''', Xk and 
with probabilities Pl, P2 , - . . ,  Pk ~ 1 of entering the system after the complet ion 
of the 1st, 2nd . . . .  , k th  stage. We remark that as soon as a customer in the ATC 
enters the system a new customer arrives at stage 1 of the ATC. For  the service 
time distribution we consider as above a service-timing channel (STC) consisting 
of m consecutive stages with rates /Xl, /~2 . . . . .  /z m and with probabilit ies 
qa, q2,...,  qm ~X I of leaving the system. 

For the steady state we introduce the random variables: 
1. N & The number of customers in the system 
2. N -  ~ The number of customers seen by  an arriving customer just  before his 

arrival 
3. R a ~ The number  of the ATC stage currently occupied by  the arriving 

customer 
4. R j & T h e  number of customers being served at the j t h  STC stage ( j =  

1, 2 , . . . ,  m) 
5. R~-& The number  of customers being served at the j t h  STC stage ( j =  

1, 2 , . . . ,  m), just  before the arrival of an entering customer 
6. Tq A= The waiting time of an arriving customer 
7. Lq zx The length of the queue. 
For  simplicity of notation we introduce the vectors of random variables 

R & ( R 1 , . . . , R m ) , R - & ( R ; , . . . , R m )  

and also we will use the notation: 

8 j s  0), a ( s , m )  A = ( s + m - 1 )  
S 

where ]i I = s means that ~jm=li j = S. 
With the above definitions the system can be formulated as a continuous time 

Markov chain with infinite state space: 

N, Ra, R ~ .. . .  , R m ) , N = O ,  1 , . . . , R a = I , 2 , . . . , k ,  Y ' ~ R j = m i n ( N , s  , 
j = l  

where the states with N < s (at least one server free) and N > s (all servers busy) 
will be termed "unsa tura ted"  and "sa tura ted"  respectively. We now introduce the 
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following set of probabilities: 

P,,, , iApr{N=n, R a = l , R = i } ,  P ~ , i A P r { N = n , R - = i } ,  

p~__a V r { N = n } ,  P~- A P r { N - = n } .  

We also define: 
f~(O), f~(O) A The Laplace transform of the interarrival and service time distri- 
butions respectively. 
1/X =a The mean interarrival time, 1//z A The mean service time, 0 ~ X/s~ = The 
traffic intensity. 
C 2 A The squared coefficient of variation of the interarrival distribution. 
C 2 __a The squared coefficient of variation of the service time distribution. 

In Bertsimas [2], after writing the equations for Pn,l,i and using separation of 
variables and a generating function technique, the following closed form expres- 
sions were established for 0 < 1, under the assumption that the roots w/ are 
distinct (we did not find any case where the roots w / a r e  not distinct; in the case 
of m = 2 we will prove that the roots wj are positive and distinct): 

a(s,m) ( r=l k (l_pr)Xr ) L , , , ,  = :(i,w,)w; 
j=l 

n> s, l = l , . . . , k ,  I i l  = s ,  (1) 

where Bj are computed by solving a linear system of a(s, m) equations with 
a(s,m) unknowns, f(i, w j) are computed from the following equations: 

f((0,  0 , . . . ,  s), w j ) =  1 
m 

(1 - q~)/~(i~ + 1)f(i+Sr--3r+l, Wj) 
r = l  

m 

+ w j E  qrl~r(ir + 1)f(i+Sr--81, Wj) 
r = 2  

m 

+WjqX#lilf(i , Wj)=f(i, WJ){r~=lirl~r--X(Wj)}, 
Iil = s ,  j =  1 , . . . ,  a(s, m). (2) 

Each of the a(s, m) roots wj. satisfies the following system of nonlinear equa- 
tions (the subscripts j corresponds to one of the a(s, m) combinations of the 
vector i=(il, i= .. . . .  im), ~rm__lir=S and for simplicity of notation x(w/) is 
simply written x): 

d~i(x) A i l O l ( X ) W i 2 0 2 ( X ) + . . . W i m O m ( X ) = X  , i l + i 2 + . . . + i m = S  , (3) 

where Oj(x) ( j  = 1,..., m) are the m roots of the polynomial equation of degree 
m :  

f~(x) f~( -O+(x) )= l (4) 
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and 
w = f ~ ( x ) .  (5) 

The generating function of the coefficients f ( i ,  w j) 
Gj(z) f(i, wi)zi'...Z m i=(il,...,im), Z=(Zl,...,Zm) 

Iil =s 

satisfies the following linear partial differential equation 

m OGj(z) (1 qr)lZrZr+l) x ( w j ) G j ( g )  (6) E ~Z r (~rZr -- WjZlqr~r -- -- = 

r = ]  

whose solution was found to be (each j corresponding to a vector i): 

m bi r(wj)zl + ... +bin r(Wj)Zm)ir 
GJ(Z) ~ r=lI-I ' ~m,;~-WU ' (7)  

where the coefficients bi, r(wj) are computed from the expansion of a determi- 
nant. 
The "unsaturated" probabilities Pn,t,J are of the form: 

a(s,m) 
P,d,i = Y'~ B j g ( n , l , i ,  wj) n < s ,  l = l , . . . , k ,  I i l = n  (8) 

j=l 
where the coefficients g(n, l, i, w j) are computed recursively. Furthermore, the 
pre-arrival probabilities Ps were found to be: 

a(s,m) 
1 n+l e~,i= X E Bff( i ,  wj)(?, 1 + x (wj ) )w j  n>~s, Iil =s .  (9) 

j = l  

2. Waiting time analysis under FCFS 

We denote 

W(t)  & Pr{O < Tq~<t} 

FTq(t ) ~ Pr{rq ~< t) = W ( t ) +  Pr{Tq = O} 

Fn,i ( t  ) A P r ( 0 <  rq <<. t iN-=n+ s, R - =  i ) .  
In this section we shall derive closed form expressions for W(t) and FTq(t), the 
probability distribution for the waiting time under FCFS of an arriving customer. 
THEOREM 1 

Under the assumption that the roots wj of the system (3), (4) and (5) are 
distinct for p < 1 the waiting time distribution for the MGE~/MGEm/s  is given 
by: 

W(t)  & Pr{O <Tq~< t} 
a(s,m) w s + l  1 : 

= -~ E B j G j ( 1 ) ( • I  + x(wj))1--Z-~j(1-e-X(WA') �9 
j = l  
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Proof 
By condit ioning on N -  and R -  we easily find that  

oo 

W(t)= E E Fn,i(t)Pn-+.,i. 
I i [  = s  n = 0  

Using (9), we can write this as 

I , + i  W(t) = ~ s Bj(~k I -[- x (wj) )wj  s f ( i ,  wj) F,,i(t)w; . (10) 
j = l  1il = s  n = 0  

By condit ioning on the next event in the interval (t, t + 6t) and taking the limit 
as & ~ 0 we can write the equations that Fn,i(t ) satisfy 

d m 
~Fn,i(t) + Fn,i(t) E irl~r 

r = l  

m m 

= Z irqrbtrFn-l,i-sr+s~(t)+ E (1-qr)l~rirFn,i-~,.+~.+l(t) 
r = l  r = l  

n > 0 ,  Iil = s  (11) 

where F_l , i ( t )  & 1, by definition. We define the Laplace t ransforms 

m*(o) zX ~ ( W( t ) )  and ~n*,,i(O) &~q~(F.,i(t)) 

and the quantities 
oo 

Ai,j(O ) zx s Wj~Pn.i(O) ' 
n = 0  

Hj(O) & ~ f ( i ,  wj)Ai,j(O ). 
lil =s 

Then from (10) we obtain 

1 a(s,m) 
W * ( 0 ) = ~  2 Bj(Xl + x(wj))w}+lHj(O) �9 (12) 

j = ]  

We now transform (11) and obtain 

o+ I2 e2 (o) 
r = l  

m m 

= s irqrl~r~*_l,i_8~+$~(O)-t- s (1--qr)~rir~*i_$,.+$r+~(O) 
r = l  r = l  

n>~0, Iil = s  (13) 

where 

~* ( O ) & ~ { F . l , i ( t ) }  = ~ { 1 }  1/0. --1,i 
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The strategy for obtaining a closed form expression for W * ( 0 )  is the following: 
1. we obtain a difference equat ion for Ai,:(O ), and 
2. we mult iply the equation for Au(O ) by the coefficients f(i,  w2), add with 

respect to i and using the equations (2), we are able to solve for Hi(O). 
We multiply (13) with w; and add with respect to n to find 

m 1 E irqrl~r q- Wj E irqrt~rAi-sr+SDj(O) O+ r=l y'~ irlxr Ai'j(O)= O r = l  r = l  

m 

+ • (1 - qr)~rirAi_~r+Sr<,j(O). (14) 
r = l  

Performing now the second step we take 
m 

OH:(O) + Y~ f( i ,  w:)Ai,j(O ) Y'~ irt~ r 
[i] =s  r = l  

1 m 

= ~ r~=lqrl~r E irf(i, W:) + Y'~ Ai,j(O ) 
Iil =s Iil =s 

Wjqllzlilf ( i, Wj) -b Wj ~ qrlXr( i r + 1 ) f ( i  -k ~ r - -  31,  Wj) 
r = 2  

+ ~ (1--qr)~r(ir+l)f(i+8~--3~+l, Wj . (15) 
r = l  

Substituting (2) into the right side of (15) we find 

ogj(o) + E f( i ,  wj)Ai,j(O ) E irl'tr 
Ii1 =s  r = l  

( = ~r~=lqrllr i~l=sirf(i, Wj) "q- E Ai,j(O)f(i, wj) 
lil =s 

Since in (16) the term 
m 

E f(i, w:)Ai,j(O ) E irltr 
Iil =s  r = l  

cancels f rom both  sides we get 
1 m 

ogj(o) = ~ E qr~r E irf(i, w j ) -  X(Wy)Hj(O), 
r = l  Iil =s  

which gives 

~m=xqr~r~lil=sirf(i , Wj) 
H + ( 0 )  = o(o+x(w+)) 

m )) 
E irltr-- X(Wj . 

r=l 

(16) 

(17) 
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From (6) for z = 1 ~ (1, 1 , . . . ,  1) we find that 

m m 

E qrltr E irf(i ,  Wj)= E qrlXr - 
r= l  [i[ =s r= l  

DGj(Z) _ x(WJ) Gj(1)" 
3zr ~=l 1 - wj 

Therefore 

x(wj)Cj(1) 1 
Hi(O)- 1-wj O(O+x(w~)) (18) 

Substituting (18) into (12) we obtain 

1 
W * ( 0 )  = ~ 

a(s,m) . s+l 
E B;Gj(1)(X~ + x(wj)) "+ x(wj) 

i-w,o(o+x(w~)) j = l  

Using partial fractions we find 

a(s,m) s+l  ( 

1 ( J ) ) l - w j  0 O + x ( w j )  
W * ( O ) = ~ -  ~ BiGj(1)(X l + x  w. w) - 1 1 

j = l  
(19) 

Now the inversion of (19) is an easy task. Thus, under the assumption that the 
roots wj are distinct, so that equation (9) holds, we have 

w(t)  ~= Pr{O< rq < t} 

1 a(s,m) w;+l 
= 2 2 ejG~(~)(x, + x ( w ~ ) ) ~ ( 1 -  e-X(w>'). 

j = l  
[] (20) 

As a check on the algebra we verify that 
OO OO 

lim W ( t ) = P r ( T q > O }  = Y'. P 2 =  Y'~ Y'~ P~i. 
t - -~  O0 n=s n=s Iil=s 

Also 

a(s,m) w s + l  

1 B;Gj(1) 1 ~ wj (21) Fr~(t ) = 1 -- ; E " ' - - ( X l  + x ( w j ) )  e -x(wj)' 
j = l  

where from (5) wj = f~(x (wj ) ) .  It is remarkable that the waiting time pdf has 
also rational Laplace transform, i.e. it belongs to the Coxian class of distributions 
of order (s~+m-1). From (21) it is easy to find the following compact expression 
for the r th moment of Tq: 

w ~  E(Vq}  = r! a(,,m) ,+1 (X I + x ( w j ) )  
-K- j=IE BjGj(1) 1 - wj [x(wj)] r 
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As an additional check on the algebra we calculate the factorial moments  of Lq, 
namely 

E { L q ( L q - 1 ) . . . ( L q - r + l ) }  

& y ' ( n - s ) ( n - s - 1 ) . . . ( n - s - r + l ) p  n" 

Since for n >/s 
k 

Po= E E Po,,,, 
1=1 Iil=s 

we find from (1) 

a(s,m) ~k 1 q- X(Wj) 
P . =  E B/G/(1) " ( l - w / ) ,  n>~s 

j = l  X(Wj) Wj 

from which, after algebraic manipulations and using the identity 
o o  

r! Y'. n ( n -  1 ) . . . ( n -  r + 1)a n - r -  
n=0 (1 - -  a)  r+l 

we find that 

E { L q ( L q - l ) . . . ( L q - r + l ) }  

a(s,m) Wj s+r (~k I -~- X(Wj)) 
E B+oj(1) 

j = l  (1--Wj)  r X(Wj)  

For r = l  we verify Little's formula E{Lq} =2tE(Tq}. For k = l  the model 
becomes M/MGEm/s and we obtain the well known result which holds for 
M/G/s: 

E ( L q ( L q - 1 ) . . . ( L q - r +  l)}=TtrE{7-q}, 

where we used the fact that in this case 

x + x(wj) 

We conclude this section with some examples, which show that the present 
approach generalizes and unifies the well known results for the G / G / l ,  G/M/s  
systems, when the distributions involved are mixed generalized Erlangs. 

1. MGEk/MGEm/1 

Since the only combination of i for s = 1 are of the type i -- (0 , . . . ,  O, 1, 0 . . . .  , O) 
(a(1,  m) = m) we verify a well-known result from G / G / 1  theory that Fr~(t ) is a 
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sum of m exponentials of the form of (21) where in this case x(wj) ,  j = 1 , . . . ,  m 
are the m roots of the equation 

f ~ ( x ) f ~ ( - x )  = 1 

subject to the constraint I f ~ ( x )  I < 1. 

2. MGE~/M/s 

For m = 1, (4) becomes 

f:o(x)f:7 - = l = x = s l ~ ( 1 - f ~ ( x ) ) .  

Since a(s, 1) = 1 we find the well known result for G / M / s  
--Xt 1 -  Ur~(t) = Kx e , 

x being the unique root of the above equation and K 1 a constant. 

3. MGEk/MGE2/s 

For m = 1, 2, 3, 4 we can solve (4) in the closed form, since it is a polynomial  
equation of degree m. For  m = 2 we find that 

Ol(X ), 02(X)= 1{/-~ 1 ~-~2--ql~lfy~(X)-{- ~ A ( f T ~ ( X ) ) } '  

where 01(x ) corresponds to the + sign and 02(x ) corresponds to the - s i g n  and 

k ( y )  =(/~1 +/~2 -Yql/~X)2 - 4/~]/~2( 1 - Y ) -  

Therefore (3) becomes 

( s -  2 i )~A(f~o(x))  --S(/~ 1 -'}- 1s ql l* , f~(x))  + 2 x = 0 ,  i = 0 , 1 , . . . , s .  

(22) 

In this case we can prove that the roots x(wj)  are positive and distinct. 

< w 0 < 1. (23) 

LEMMA 2 
The roots wj are positive and distinct and satisfy 

O < x ( W o ) < X ( W x ) <  ... <X(Ws), 0 < w s < W s _ l <  .. .  

Proof 
Denote by q,i(x) the expression in the left side of (22). We observe that ~i (x)  

is a continuous function on the set of real numbers ~ with the properties: 
1. l i m x ~ q , i ( x  ) = oc; 
2. ~i(0) = - 2 i ( ~  2 + ~1(1 - ql)) < 0 for i = 1, 2 , . . . ,  s; and 
3. ( )0 (x)=  - 2 x ( 1 -  O)/O + o(x) as x--+ 0. (This result is established by  using 

Taylor expansion of q~0(x).) 
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From the above properties it is clear that the root x(wi )  of the equation 
q~i(x)--0 are positive and thus w i = f ~ ( x ( w i )  ) are positive too. Furthermore,  
q~i(x) = a ( x ) -  ib(x), with b(x)  being positive for all x. Therefore for a fixed 
value of x we have that ~0(x) > ~ l (x )  > . . .  > ~,(x) ,  which gives 0 < X(Wo) < 
X(Wa) < . . .  < x(ws).  Since the function f ~ ( x )  is decreasing for x > 0, it follows 
that 

O < W s < W s _ l  < . . .  < W0< 1. [] 

A surprising consequence of the above lemma is the fact that we can analyse this 
model  using real arithmetic. This is not true for any m. 

3. Asymptotic results 

In this section we verify and extend some asymptotic results for the 
M G E k / M G E m / s  queue. Takahashi [9] proved that in a P H / P H / s  system the 
stationary probabili ty /-/m that there are more than m customers waiting in the 
queue behaves asympototically as 

H m - K 2 ~l m ( m --> oc ) , 

where the constant K 2 w a s  not computed and ~ =f.~(sy) ,  y being the unique 
positive root of the equation 

f ~ ( s y ) f s  l .  

Furthermore,  he proved that as t ---, oc 

x2 x(1 
1 - Frq(t ) - K 3 e -syt,  

K 3 sy  

In order to see the connection between these results and the results of the present 
paper, we observe that 

oo a(s,m) ~k I -t- X ( W j )  
Fire= E P , =  E BjGj(1) ,+1 m 

n=m+s+l  j = l  X ( W j )  Wj Wj . 

Thus asymptotically as m ---> 

/ ~ m -  BIGI(1) ~kl -'F X(Wl) s+l m X(Wl) wl Wl, 

where w 1 is the root corresponding to the combinat ion of i = (0 , . . . ,  s). Specializ- 
ing (3), (4) and (5) we find that w I =fT~(X(Wl) ) where x (wl )  is the unique 
positive root  of the equation 
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Letting 

x (wl )  
y - -  - - ,  ' ~ = W  1 

S 

we see that the two results are identical. We also observe from (21) that as t -~ 
s+l 

Wl e-X(W,),. 
1 - Frq(t ) --> B1GI(1)(X 1 + X(Wl) ) 1 - w 1 

Again the two results are identical and we can also easily verify that 

K 2 X (1 - w 1) 

K3 X(Wl) 

It should also be stressed that in our expressions we are able to compute explicitly 
the constants K2, K 3. 

4. Computational and complexity considerations 

In order to extract numerical results from the formulae presented in the section 
o(k  (, -1)3), 3 the author in [2] has proposed an algorithm with complexity 3 s+m 

which is polynomial if only one of the parameters s or m varies, but  is 
exponential if both parameters vary. In other words, for an arbitrary interarrival 
distribution and a given service time distribution the problem of determining the 
waiting time distribution under FCFS can be solved in time polynomial in the 
number  of servers. This algorithm is summarized as follows: 
1. determination of the (s+m-l)  roots wj of the system of equations (3)-(5); 
2. recursive determination of the coefficients f ( i ,  w;) from (2); 
3. recursive determination of the coefficients g(n, l, i, w j) in (8) from the 

equations that P,,.t,i satisfy for n < s; and 
4. determination of the (~+m-1) unknowns Bj as a solution of a nonhomogeneous 

linear system with (~ § m - 1) equations. 

We are currently investigating a parallel implementat ion of the above al- 
gorithm, based on the fact that the equations (3)-(5) are separable. 

To fully gauge the performance of the proposed algorithm we programmed it 
in F O R T R A N  77 on a SUN 3 for the general class of the M G E  2 distributions, i.e. 
for the MGE2/MGE2/s  system. The reasons for choosing this model  are that it 
is representative of the general behavior of the algorithm for more general 
models, is rather unexpectedly (as shown in lemma 2) in real arithmetic, its 
complexity is O(s 3) and allows the determination of exact results when the 
coefficients of variation of the interarrival and of the service time pdf  are both 
bigger than 1/2.  In the implementation of the above algorithm in this case we 
used the Newton-Raphson method to determine the s + 1 roots wj. Exploiting 
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the established ordering of the roots (equation (23)), as a starting point for the 
next root we used the previous one. In this way we observed that the method 
converged very fast. Steps (2), (3) and (4) were implemented in a straightforward 
way. From a computational point of view the heaviest part of the algorithm is the 
third step, because there is a large number of unknowns (O(s 3) in this case). 

Ramaswami and Lucantoni [6] extended in an elegant way the potential of the 
matrix-geometric method developed by M. Neuts. They used the randomization 
technique to obtain an algorithm for computing the waiting time distribution for 
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Fig. 2. /3ro(t ) as a function of C~ for the MGE2/MGE2/10  system ( p  = 0.9, C f  = 5.0). 
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the G/PH/s  queue. Their formula for the complementary distribution function 
of the stationary waiting time is of the form 

(3(3 

E dje  -~ 
j=O J! 

Since this expression involves an infinite sum, truncation should be used in order 
to extract numerical results�9 The method has good stability properties, because 
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Fig. 3. -Frq(t) as a function of C 2 for the M G E a / M G E 2 / 5  system (0 = 0.8, C~ 2 = 5.0). 
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the summation involves only positive terms and the error introduced from the 
truncation can be computed and bounded.  

In comparison with this approach, the present approach offers qualitative 
insight by  providing closed form expressions for the stationary waiting time 
distribution as a finite sum of , s  (s+ m--1]i exponentials (equation (20)), the exponents 
of which are computed from equations that involve only the Laplace transforms 
of the interarrival and service time distributions (equations (3), (4)). In the 
matrix-geometric method one has to compute  a rate matrix R as a solution to the 
nonlinear matrix equation R = F~n~=oRnA~, where the dimensions of the matrices 
involved are (~+m-~); in the present approach one has to compute  (s+m-l~ roots 

k S  -' 

x(wj), which satisfy the separable equations (3), (4). Thus one can compute  the 
x ( w j )  independently of each other and so the implementat ion of this part  of the 
algorithm (determination of x(wj)) is less complex than the determination of the 
matrix R and can be done in parallel. 

As an illustration of the stability and accuracy of the present algorithm, we 
present in fig. 2 some results for the waiting time complementary distribution 
ffr~(t) ~ 1 -/~r~(t) for the MGE2/MGEz/s system as C 2 varies (s = 10, O = 
0.9, C ) =  5.0). In fig. 3 we show the dependence of ffr~(t) for the MGE2/MGE2/s 
system on C) (s = 5, 0 = 0.8, C 2 = 5.0). 
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